我们提出了一种简单有效的自我监督学习方法,以供语音识别。该方法以随机预测量化器生成的离散标签的形式学习了一个模型,以预测蒙版的语音信号。尤其是量化器的语音输入带有随机初始化的矩阵,并在随机限制的代码簿中进行最近的邻居查找。在自我监督的学习过程中,矩阵和密码簿均未更新。由于未对随机预测量化器进行训练,并与语音识别模型分开,因此该设计使该方法具有灵活性,并且与通用语音识别体系结构兼容。在LibrisPeech上,我们的方法与以前的工作相比,使用非流式模型获得了与以前的工作相似的单词率,并且比WAV2VEC 2.0和WAP2VEC 2.0和w2v-bert提供了较低的单词率率和延迟。在多语言任务上,该方法还提供了与WAV2VEC 2.0和W2V-bert的显着改进。
translated by 谷歌翻译
我们总结了使用巨大的自动语音识别(ASR)模型的大量努力的结果,该模型使用包含大约一百万小时音频的大型,多样的未标记数据集进行了预训练。我们发现,即使对于拥有数万个小时的标记数据的非常大的任务,预训练,自我培训和扩大模型大小的组合也大大提高了数据效率。特别是,在具有34K小时标记数据的ASR任务上,通过微调80亿个参数预先训练的构象异构体模型,我们可以匹配最先进的(SOTA)性能(SOTA)的性能,只有3%的培训数据和通过完整的训练集可以显着改善SOTA。我们还报告了从使用大型预训练和自我训练的模型来完成一系列下游任务所获得的普遍利益,这些任务涵盖了广泛的语音域,并涵盖了多个数据集大小的大小,包括在许多人中获得SOTA性能公共基准。此外,我们利用预先训练的网络的学会表示,在非ASR任务上实现SOTA结果。
translated by 谷歌翻译
我们利用Libri-Light数据集的未标记音频来获得半监督学习中最新的发展的最新发展,以获得自动语音识别的最新结果。更确切地说,我们使用使用WAV2VEC 2.0预训练的巨型构象模型进行了嘈杂的学生培训,并使用巨型构象模型进行了训练。通过这样做,我们能够在Librispeech测试/测试中获得1.4%/2.6%的单词率率(WERS),而目前的最新设备为1.7%/3.3%。
translated by 谷歌翻译
Recently Transformer and Convolution neural network (CNN) based models have shown promising results in Automatic Speech Recognition (ASR), outperforming Recurrent neural networks (RNNs). Transformer models are good at capturing content-based global interactions, while CNNs exploit local features effectively. In this work, we achieve the best of both worlds by studying how to combine convolution neural networks and transformers to model both local and global dependencies of an audio sequence in a parameter-efficient way. To this regard, we propose the convolution-augmented transformer for speech recognition, named Conformer. Conformer significantly outperforms the previous Transformer and CNN based models achieving state-of-the-art accuracies. On the widely used LibriSpeech benchmark, our model achieves WER of 2.1%/4.3% without using a language model and 1.9%/3.9% with an external language model on test/testother. We also observe competitive performance of 2.7%/6.3% with a small model of only 10M parameters.
translated by 谷歌翻译
We present SpecAugment, a simple data augmentation method for speech recognition. SpecAugment is applied directly to the feature inputs of a neural network (i.e., filter bank coefficients). The augmentation policy consists of warping the features, masking blocks of frequency channels, and masking blocks of time steps. We apply SpecAugment on Listen, Attend and Spell networks for end-to-end speech recognition tasks. We achieve state-of-the-art performance on the LibriSpeech 960h and Swichboard 300h tasks, outperforming all prior work. On LibriSpeech, we achieve 6.8% WER on test-other without the use of a language model, and 5.8% WER with shallow fusion with a language model. This compares to the previous stateof-the-art hybrid system of 7.5% WER. For Switchboard, we achieve 7.2%/14.6% on the Switchboard/CallHome portion of the Hub5'00 test set without the use of a language model, and 6.8%/14.1% with shallow fusion, which compares to the previous state-of-the-art hybrid system at 8.3%/17.3% WER.
translated by 谷歌翻译
It is well established in neuroscience that color vision plays an essential part in the human visual perception system. Meanwhile, many novel designs for computer vision inspired by human vision have achieved success in a wide range of tasks and applications. Nonetheless, how color differences affect machine vision has not been well explored. Our work tries to bridge this gap between the human color vision aspect of visual recognition and that of the machine. To achieve this, we curate two datasets: CIFAR10-F and CIFAR100-F, which are based on the foreground colors of the popular CIFAR datasets. Together with CIFAR10-B and CIFAR100-B, the existing counterpart datasets with information on the background colors of CIFAR test sets, we assign each image based on its color contrast level per its foreground and background color labels and use this as a proxy to study how color contrast affects machine vision. We first conduct a proof-of-concept study, showing the effect of color difference and validate our datasets. Furthermore, on a broader level, an important characteristic of human vision is its robustness against ambient changes; therefore, drawing inspirations from ophthalmology and the robustness literature, we analogize contrast sensitivity from the human visual aspect to machine vision and complement the current robustness study using corrupted images with our CIFAR-CoCo datasets. In summary, motivated by neuroscience and equipped with the datasets we curate, we devise a new framework in two dimensions to perform extensive analyses on the effect of color contrast and corrupted images: (1) model architecture, (2) model size, to measure the perception ability of machine vision beyond total accuracy. We also explore how task complexity and data augmentation play a role in this setup. Our results call attention to new evaluation approaches for human-like machine perception.
translated by 谷歌翻译
It is no secret that deep learning models exhibit undesirable behaviors such as learning spurious correlations instead of learning correct relationships between input/output pairs. Prior works on robustness study datasets that mix low-level features to quantify how spurious correlations affect predictions instead of considering natural semantic factors due to limitations in accessing realistic datasets for comprehensive evaluation. To bridge this gap, in this paper we first investigate how natural background colors play a role as spurious features in image classification tasks by manually splitting the test sets of CIFAR10 and CIFAR100 into subgroups based on the background color of each image. We name our datasets CIFAR10-B and CIFAR100-B. We find that while standard CNNs achieve human-level accuracy, the subgroup performances are not consistent, and the phenomenon remains even after data augmentation (DA). To alleviate this issue, we propose FlowAug, a semantic DA method that leverages the decoupled semantic representations captured by a pre-trained generative flow. Experimental results show that FlowAug achieves more consistent results across subgroups than other types of DA methods on CIFAR10 and CIFAR100. Additionally, it shows better generalization performance. Furthermore, we propose a generic metric for studying model robustness to spurious correlations, where we take a macro average on the weighted standard deviations across different classes. Per our metric, FlowAug demonstrates less reliance on spurious correlations. Although this metric is proposed to study our curated datasets, it applies to all datasets that have subgroups or subclasses. Lastly, aside from less dependence on spurious correlations and better generalization on in-distribution test sets, we also show superior out-of-distribution results on CIFAR10.1 and competitive performances on CIFAR10-C and CIFAR100-C.
translated by 谷歌翻译
This paper introduces the use of evolutionary algorithms for solving differential equations. The solution is obtained by optimizing a deep neural network whose loss function is defined by the residual terms from the differential equations. Recent studies have used stochastic gradient descent (SGD) variants to train these physics-informed neural networks (PINNs), but these methods can struggle to find accurate solutions due to optimization challenges. When solving differential equations, it is important to find the globally optimum parameters of the network, rather than just finding a solution that works well during training. SGD only searches along a single gradient direction, so it may not be the best approach for training PINNs with their accompanying complex optimization landscapes. In contrast, evolutionary algorithms perform a parallel exploration of different solutions in order to avoid getting stuck in local optima and can potentially find more accurate solutions. However, evolutionary algorithms can be slow, which can make them difficult to use in practice. To address this, we provide a set of five benchmark problems with associated performance metrics and baseline results to support the development of evolutionary algorithms for enhanced PINN training. As a baseline, we evaluate the performance and speed of using the widely adopted Covariance Matrix Adaptation Evolution Strategy (CMA-ES) for solving PINNs. We provide the loss and training time for CMA-ES run on TensorFlow, and CMA-ES and SGD run on JAX (with GPU acceleration) for the five benchmark problems. Our results show that JAX-accelerated evolutionary algorithms, particularly CMA-ES, can be a useful approach for solving differential equations. We hope that our work will support the exploration and development of alternative optimization algorithms for the complex task of optimizing PINNs.
translated by 谷歌翻译
To rigorously certify the robustness of neural networks to adversarial perturbations, most state-of-the-art techniques rely on a triangle-shaped linear programming (LP) relaxation of the ReLU activation. While the LP relaxation is exact for a single neuron, recent results suggest that it faces an inherent "convex relaxation barrier" as additional activations are added, and as the attack budget is increased. In this paper, we propose a nonconvex relaxation for the ReLU relaxation, based on a low-rank restriction of a semidefinite programming (SDP) relaxation. We show that the nonconvex relaxation has a similar complexity to the LP relaxation, but enjoys improved tightness that is comparable to the much more expensive SDP relaxation. Despite nonconvexity, we prove that the verification problem satisfies constraint qualification, and therefore a Riemannian staircase approach is guaranteed to compute a near-globally optimal solution in polynomial time. Our experiments provide evidence that our nonconvex relaxation almost completely overcome the "convex relaxation barrier" faced by the LP relaxation.
translated by 谷歌翻译
Causal phenomena associated with rare events frequently occur across a wide range of engineering and mathematical problems, such as risk-sensitive safety analysis, accident analysis and prevention, and extreme value theory. However, current methods for causal discovery are often unable to uncover causal links between random variables that manifest only when the variables first experience low-probability realizations. To address this issue, we introduce a novel algorithm that performs statistical independence tests on data collected from time-invariant dynamical systems in which rare but consequential events occur. We seek to understand if the state of the dynamical system causally affects the likelihood of the rare event. In particular, we exploit the time-invariance of the underlying data to superimpose the occurrences of rare events, thus creating a new dataset, with rare events are better represented, on which conditional independence tests can be more efficiently performed. We provide non-asymptotic bounds for the consistency of our algorithm, and validate the performance of our algorithm across various simulated scenarios, with applications to traffic accidents.
translated by 谷歌翻译